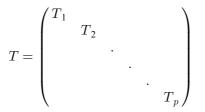
NAG C Library Function Document

nag_dstein (f08jkc)

1 Purpose

nag_dstein (f08jkc) computes the eigenvectors of a real symmetric tridiagonal matrix corresponding to specified eigenvalues, by inverse iteration.


2 Specification

3 Description

nag_dstein (f08jkc) computes the eigenvectors of a real symmetric tridiagonal matrix T corresponding to specified eigenvalues, by inverse iteration (see Jessup and Ipsen (1992)). It is designed to be used in particular after the specified eigenvalues have been computed by nag_dstebz (f08jjc) with **rank** = **Nag_ByBlock**, but may also be used when the eigenvalues have been computed by other F08 or F02 functions.

If T has been formed by reduction of a full real symmetric matrix A to tridiagonal form, then eigenvectors of T may be transformed to eigenvectors of A by a call to nag_dormtr (f08fgc) or nag_dopmtr (f08ggc).

nag_dstebz (f08jjc) determines whether the matrix T splits into block diagonal form:

and passes details of the block structure to this function in the arrays **iblock** and **isplit**. This function can then take advantage of the block structure by performing inverse iteration on each block T_i separately, which is more efficient than using the whole matrix.

4 References

Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore

Jessup E and Ipsen I C F (1992) Improving the accuracy of inverse iteration SIAM J. Sci. Statist. Comput. 13 550–572

5 Parameters

1: **order** – Nag_OrderType

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by $order = Nag_RowMajor$. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

Input

2:	n – Integer On entry: n, the order of the matrix T. Constraint: $\mathbf{n} \ge 0$.	Input
3:	d[dim] – const double Note: the dimension, <i>dim</i> , of the array d must be at least max(1, n). <i>On entry</i> : the diagonal elements of the tridiagonal matrix <i>T</i> .	Input
4:	e[dim] – const double Note: the dimension, dim , of the array e must be at least max $(1, n - 1)$. On entry: the off-diagonal elements of the tridiagonal matrix T.	Input
5:	\mathbf{m} – Integer On entry: m , the number of eigenvectors to be returned. Constraint: $0 \le \mathbf{m} \le \mathbf{n}$.	Input
6:	$\mathbf{w}[dim]$ – const double	Input

Note: the dimension, dim, of the array w must be at least max $(1, \mathbf{n})$.

On entry: the eigenvalues of the tridiagonal matrix T stored in w[0] to w[m], as returned by nag_dstebz (f08jjc) with rank = Nag_ByBlock. Eigenvalues associated with the first sub-matrix must be supplied first, in non-decreasing order; then those associated with the second sub-matrix, again in non-decreasing order; and so on.

Constraint: if iblock[i] = iblock[i+1], $w[i] \le w[i+1]$ for i = 0, 1, ..., m-2.

7: **iblock**[dim] – const Integer

Note: the dimension, dim, of the array iblock must be at least max $(1, \mathbf{n})$.

On entry: the first m elements must contain the sub-matrix indices associated with the specified eigenvalues, as returned by nag_dstebz (f08jjc) with **rank** = **Nag_ByBlock**. If the eigenvalues were not computed by nag_dstebz (f08jjc) with **rank** = **Nag_ByBlock**, set **iblock**[i] to 1 for i = 1, 2, ..., m.

Constraint: $iblock[i] \leq iblock[i+1]$ for $i = 0, 1, \dots, m-2$.

8: isplit[dim] - const Integer

Note: the dimension, dim, of the array isplit must be at least max $(1, \mathbf{n})$.

On entry: the points at which T breaks up into sub-matrices, as returned by nag_dstebz (f08jjc) with $rank = Nag_ByBlock$. If the eigenvalues were not computed by nag_dstebz (f08jjc) with $rank = Nag_ByBlock$, set isplit[0] to n.

9: $\mathbf{z}[dim] - double$

Note: the dimension, dim, of the array z must be at least $max(1, pdz \times m)$ when order = Nag_ColMajor and at least $max(1, pdz \times n)$ when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix Z is stored in $\mathbf{z}[(j-1) \times \mathbf{pdz} + i - 1]$ and if order = Nag_RowMajor, the (i, j)th element of the matrix Z is stored in $\mathbf{z}[(i-1) \times \mathbf{pdz} + j - 1]$.

On exit: the *m* eigenvectors, stored as columns of *z*; the *i*th column corresponds to the *i*th specified eigenvalue, unless fail > 0 (in which case see Section 6).

10: **pdz** – Integer

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array z.

Output

Input

Input

Input

Output

Output

Constraints:

 $\begin{array}{ll} \text{if order} = \textbf{Nag_ColMajor, } \textbf{pdz} \geq \max(1,\textbf{n}); \\ \text{if order} = \textbf{Nag_RowMajor, } \textbf{pdz} \geq \max(1,\textbf{m}). \end{array}$

11: **ifailv**[dim] – Integer

Note: the dimension, dim, of the array ifaily must be at least max $(1, \mathbf{m})$.

On exit: if fail = i > 0, the first *i* elements of *ifailv* contain the indices of any eigenvectors which have failed to converge. The rest of the first **m** elements of *ifailv* are set to 0.

12: fail – NagError *

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{n} \ge 0$. On entry, $\mathbf{pdz} = \langle value \rangle$. Constraint: $\mathbf{pdz} > 0$.

NE_INT_2

On entry, $\mathbf{m} = \langle value \rangle$, $\mathbf{n} = \langle value \rangle$. Constraint: $0 \leq \mathbf{m} \leq \mathbf{n}$.

On entry, $\mathbf{pdz} = \langle value \rangle$, $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{pdz} \geq \max(1, \mathbf{n})$.

On entry, $\mathbf{pdz} = \langle value \rangle$, $\mathbf{m} = \langle value \rangle$. Constraint: $\mathbf{pdz} \ge \max(1, \mathbf{m})$.

NE_INT_ARRAY

On entry, $\mathbf{iblock}[i]\mathbf{w}[i]\mathbf{iblock}[i] = \langle value \rangle$. Constraint: if $\mathbf{iblock}[i] = \mathbf{iblock}[i+1]$, $\mathbf{w}[i] \le \mathbf{w}[i+1]$ for $i = 0, ..., \mathbf{m} - 2$.

On entry, $iblock[i]w[i]iblock[i] = \langle value \rangle$. Constraint: $iblock[i] \leq iblock[i+1]$ for i = 0, ..., m-2.

NE_CONVERGENCE

 $\langle value \rangle$ eigenvectors (as indicated by argument **ifailv**) each failed to converge in 5 iterations. The current iterate after 5 iterations is stored in the corresponding column of z.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter $\langle value \rangle$ had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

Each computed eigenvector z_i is the exact eigenvector of a nearby matrix $A + E_i$, such that $||E_i|| = O(\epsilon)||A||$, where ϵ is the *machine precision*. Hence the residual is small:

$$\|Az_i - \lambda_i z_i\| = O(\epsilon) \|A\|.$$

However a set of eigenvectors computed by this function may not be orthogonal to so high a degree of accuracy as those computed by nag_dsteqr (f08jec).

8 Further Comments

The complex analogue of this function is nag_zstein (f08jxc).

9 Example

See Section 9 of the document for nag_dormtr (f08fgc).